Forget 9-volts, AAs, AAAs or D batteries - the energy for tomorrow's miniature electronic devices could come from tiny microbatteries about half the size of a human cell and built with viruses. Suck on that 1918 pandemic!
MIT engineers have developed a way to at once create and install such microbatteries -- which could one day power a range of miniature devices, from labs-on-a-chip to implantable medical sensors -- by stamping them onto a variety of surfaces. Last week the team described assembling and successfully testing two of the three key components of a battery. A complete battery is on its way.
"To our knowledge, this is the first instance in which microcontact printing has been used to fabricate and position microbattery electrodes and the first use of virus-based assembly in such a process," they wrote. Further, the technique itself "does not involve any expensive equipment, and is done at room temperature."
The batteries consist of two opposite electrodes -- an anode and cathode -- separated by an electrolyte. In the current work, the MIT team created both the anode and the electrolyte (cue Gatorade sponsorship?). First, on a clear, rubbery material the team used a common technique called soft lithography to create a pattern of tiny posts either four or eight millionths of a meter in diameter. On top of these posts, they then deposited several layers of two polymers that together act as the solid electrolyte and battery separator.
Next came viruses that preferentially self-assemble atop the polymer layers on the posts, ultimately forming the anode. In 2006, the researchers reported how to do this. Specifically, they altered the virus's genes so it makes protein coats that collect molecules of cobalt oxide to form ultrathin wires -- together, the anode. The final result? A stamp of tiny posts, each covered with layers of electrolyte and the cobalt oxide anode. "Then we turn the stamp over and transfer the electrolyte and anode to a platinum structure" that, together with lithium foil, is used for testing.
The team concluded the resulting electrode arrays exhibit full electrochemical functionality. So, what's next? In addition to developing the third part of a full battery -- the cathode -- via the viral assembly technique, the team is also exploring a stamp for use on curved surfaces and integrating [the batteries] with biological organisms.
No comments:
Post a Comment